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I 
NOTATION 

a Acceleration 

C-    wn Drag coefficient for segment of cable between stations 
j and j + 1 

C- Resistance coefficient for horizontal motion of suspended 
] pnsm 

Y 
C. Resistance coefficient for vertical motion of suspended 

prism 

c Velocity of uniform horizontal current 

D Drag 

dz + W2 Diameter of segment of cable between stations j and j + 1 

ei + 1/2 Virtual mass of entrained fluid between stations j and j + 1 

F Resultant force 

fjD+ 1/2 Drag factor for cable   = (P/2^ C]P+ 1/2 *] + 1/2 dj + 1/2 

ff" Horizontal drag factor for suspended prism = (p/2) Cf" S 
J J    j 

f- Vertical drag factor for suspended prism   = (p/2) C.  SY 

g Acceleration due to gravity 

L Component of inertia tensor 

i Imaginary unit 

J- Component of inertia tensor 

j Subscript denoting station number along line 

in 
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K. Component of inertia tensor 

kj + 1/2 Virtual inertia coefficient for segment of cable between 
stations j and j + 1 

h + 2/2 Length of line between stations j and j + 1 

m^ Mean mass of segments of cable adjoining station j 

m-j Mass of prism suspended from station j 

m.: Effective horizontal mass of suspended prism 

Y mj Effective vertical mass of suspended prism 

n Superscript denoting time-step number 

o Superscript denoting initial state (origin in time), or 
subscript denoting anchor end of line 

p Tangential component of velocity of cable (relative to "„ 
medium) 

q Normal component of velocity of cable (relative to 
medium) 

x 
S- Projected area of suspended prism along x-axis 

Y Si Projected area of suspended prism along y-axis 

s Subscript denoting surface end of line 

T Tension 

t Time 

At Time-step interval 

u Magnitude of velocity of cable (relative to medium) 
■ 

V- Volume of prism suspended from station j 

V^ Equivalent volume of horizontal virtual mass of suspended d 
prism 

iv 
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WJ 

X 
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A 

^j + 1/2 

P 

dj + 1/2 

Equivalent volume of vertical virtual mass of suspended 
prism 

Mean net weight of segments of cable adjoining station j 

Net weight of prism suspended from station j 

Horizontal component of resultant external force 

Horizontal component of damping force on suspended 
prism 

Horizontal coordinate of cable 

Vertical component of resultant external force 

Vertical component of damping force oh suspended 
prism 

Vertical coordinate of cable 

Damping coefficient of the perturbation functions 

Dimensionless frequency Of the perturbation functions 

The variation of 

Angle between horizontal and tangent to cable 

Eigenvalue (root of characteristic equation) 

Linear density of segment of cable between stations 
j and j + 1 

Density of fluid medium 

Cross-section area of segment of cable between stations 
j and j + 1 

Dot signifies differentiation with respect to time 

Tilde signifies tentative value of a variable 
v 



ABSTRACT 

The system of partial differential equations governing the nonlinear 

transient motion of a cable immersed in a fluid is solved by finite difference 

methods.   This problem may be considered a generalization of the classical 

vibrating string problem in the following respects: a) the motion is two 

dimensional,   b) large displacements are permitted,   c) forces due to the 

weight of the cable, buoyancy, virtual inertia of the medium and damping 

or drag are included, and d) the cable is assumed to be nonuniform.    The 

numerical solution of this system of equations presented a number of interesting 

mathematical problems related to: a) the nonlinear  nature of the equations, 

b) the determination of a stable numerical procedure, and c) the determi- 

nation of an effective computational method.   The computation is programmed 

for a high-speed calculator (UNIVAC system).   The solution of this problem 

is of practical significance in the calculation of the transient forces acting 

on mooring lines due to the bobbing up and down of ships during the period 

preceding large scale explosion tests, as well as in many other applications 

involving mooring or towing operations. 

( 
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1. INTRODUCTION 

This problem arose as a result of an urgent requirement by the Navy 

in connection with a series of nuclear explosion tests which were conducted 

in the Pacific.   In preparation for these tests a number of ships were 

instrumented and moored at specified locations from the explosion point. 

These positions had to be maintained intact during the period preceding the 

explosion.   However, the bobbing up and down of the ships due to ocean waves 

during this period could excite sizeable transient forces in the mooring lines 

which might break these lines and thus result in the loss of information from 

the tests.   Several months prior to these tests a request was made to the 

Applied Mathematics Laboratory to calculate the magnitude of the forces 

acting on the mooring lines, for waves of varying amplitude and frequency. 

It is gratifying to report that in spite of the theoretical complexities of this 

problem and the absence of any known solutions, the Applied Mathematics 

Laboratory was able to obtain the required results in time for use during 

the scheduled tests.   The two factors which made a theoretical solution 

feasible at this time, whereas it would not have been possible several 

years ago, were: a) the availability of a high-speed computer and b) the 

recent progress made in the understanding and development of numerical 

methods for the solution of systems of partial differential equations. 

Whereas the solution to this problem was carried out as a result of 

one specific requirement, it is more useful to regard it as the general 

problem of the two-dimensional motion of a cable or rope immersed in a ( 
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fluid.   From this point of view it may be considered as a rather broad 

generalization of the classical vibrating string problem, and it becomes 

immediately apparent that its solution is applicable to a wide class of 

engineering problems involving the motion of cables, such as  a) the 

laying of intercontinental telegraph cables,   b) the towing of a ship or 

other object in water, or  c) the snapping of telephone wires as a result 

of transient forces caused by storm.   This problem may be stated abstractly 

as follows: Given the initial conditions (i.e., position and velocity at any 

time, tg) and boundary conditions (positions of end points at all times) of 

a cable immersed in a fluid, determine its subsequent motions.   The motions 

are assumed to take place in two dimensions. 

Forces that are assumed acting on the cable are: a) forced motion of 

the extremities (end points) of the cable,   b) damping or drag as it moves 

through the fluid, c) virtual inertia due to the motion imparted to the fluid 

d) weight of the cable, and e) buoyancy.   Variations in the mass as well as 

other physical properties of the cable along its length are allowed.   The 

displacements may be large and the motions rapid.   In the present solution 

it is assumed that the cable is inextensible (cannot be stretched).   In 

subsequent work the authors have carried out solutions for cables with 

elastic properties.   The motions are not restricted in any manner (except 

that these take place in two dimensions). 

The solution was carried out by the method of finite differences. 

This method consists simply in replacing the derivatives of various order 
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in the differential system of equations by equivalent ratios of finite increments.       f 

This substitution results in a system of difference equations, which are 

algebraic in form, and hence more easily tractable.   However, in order to 

represent a valid solution, the system of finite difference equations so derived 

must possess certain mathematical stability (and convergence) properties. 

It must have the property that its solution progressively increases in accuracy 

as the size of the time increment used in the above representation is gradually 

decreased.   Unfortunately, the system of finite difference equations initially 

proposed for the solution of this problem did not satisfy these stability 

requirements.   A search for a stable finite difference system as well as for 

an effective method for solving the resulting system of finite difference 

equations, which was nonlinear  in character, added to the complexity of \ 
« 

the problem. 

O 
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0 2.   DERIVATION OF EQUATIONS OF MOTION 

The problem under consideration is a generalization of the classical 

problem of the motion of a vibrating string.   In at least one respect the 

formulation of the problem given here will not differ from that of the original. 

Specifically,, we wish to deduce the approximate motion of a steel cable 

without having to involve ourselves in the explicit computation of the elastic 

forces which act on the cable.   However, the formulation will depart from 

the original in a number of respects, namely: 

a) Longitudinal as well as transverse motions of the line must be 

taken into consideration. 

b) The occurrence of large displacements from the equilibrium 

configuration of the line must be permitted. 

c) The weight of the cable must be taken into account because the line 

may stretch from one level to another.   Thus, even when the line is in static 

equilibrium, the tension will not be uniform nor will the line be straight. 

d) Since the cable is submerged, the static forces must include the 

buoyancy of the medium and the dynamic forces must allow for the virtual 

inertia of the medium.   Furthermore, it. is desired to make provision for 

damping forces due to the drag on the line whenever lateral motion is 

occurring. 

e) Finally, it is desired to suspend concentrated loads at one or more 

points along the line and to change the linear density of the cable at specified 

points. 



The best approach to the solution of a problem with such general 

specifications appears to be a numerical method based on finite difference 

approximations.   Inasmuch as we are committing ourselves to the eventual 

use of differences in both the time and space dimensions, it will be simpler 

to introduce the spacewise discreteness into the original formulation of the 

problem.   We therefore proceed at once to the derivation of the equation of 

motion of a simplified model in which the distributed mass of the cable has 

been replaced by a series of discrete masses mj   attached to a weightless, 

inextensible line.   This leads to a system of ordinary differential equations. 

It may be shown that,, in the limit, the resulting equations pass over into 

the corresponding partial differential equations for the motion of a sub- 

merged cable. 
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Figure 1 shows a typical configuration of the system with the cable 

attached to a float at the surface and anchored to the bottom.   Also, a 

heavy load is suspended from a point near one end of the cable.   Other 

boundary conditions are possible, but the equations of motion will be the 

same in any case.   The horizontal and vertical coordinates of a point on 

the line are called x and y, respectively, and the angle between the 

horizontal and the tangent to the line is designated by 9.   Figure 2 

illustrates the corresponding discrete model for which the equations will 

actually be derived.   The line is divided into segments in such a way that 

there will always be an integral number of them between any points where 

an abrupt change occurs in some parameter.   The junctions between the 

segments are numbered according to the subscript index  j, which runs 

from 0 at the anchor to s at the surface. 

Before we can properly invoke Newton's law of motion, it is necessary 

to consider the inertial properties of the fluid in which the cable is immersed. 

We shall assume that the kinetic energy of the surrounding medium is 

independent of the component of velocity parallel to the line, whereas it 

varies as the square of the component of velocity at right angles to the line. 

Thus, when an element of the cable is accelerated longitudinally, no hydro- 

dynamic reaction occurs, but when the cable is accelerated laterally, it 

behaves as though it possessed additional inertia.   The component of 

acceleration normal to the line is 

anormal = - x sin 0 + y cos 9 



anormal  sin g = x sin2 9 - y sin 9 cos 9 

The accompanying inertial reaction can be resolved into horizontal and 

vertical components.   Each of these will oe proportional to the corresponding 

component of anorma , namely, 

HORZ. COMP: 

VERT. COMP: anormal cos 9 = y cos2 0 _ x sin 9 cos 9 

Thus, each component of the hydrodynamic reaction depends on both components 

of acceleration.   In general, the reaction force is not parallel to the acceleration 

vector (except when the tangential component is zero), so that it is necessary 

to regard the inertial parameters of the system as tensors rather than simple 

scalars. 

The differential equations governing the motion of the j ^ station on the 

line (see Fig. 2) can be written in matrix notation as follows: { 

where: 

\h-*l *j 
'FHORZ 

,       -        ) 

h ^VERT 

v               1 

(2.1) 

L = mi + - fo    1   sin2 6.    1  + e.    1   sin2 9.    1 \    + mi X 

Jj = nli4 fej+i
cos2ej4 +ej4cos2Vi) +mj" 

Kj =-0 (.en + l   sin 9.    l  cos 9.   ^ + e.   1   sin 9.   1  cos 9.   1) 
j+t ]+2      ^"2 j"2 i-r 
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I and 
J    2 

i + l   1.   1 
3+ö     J+9 

fi.   1     hl 

e.-, i =     pk.   1      i.   1 rf.   1 

m.x =  nii* +  pV.x 

v * ,T Y m.1  = m,-  +   pV.1 

J J J 

cos 9 + 1    =  (xj + 1  -  x^/i^l 

i)/ii+l sin9j+^   =  (yj + i  -  yj^j+- 

Each lumped mass, mj, has been expressed as the average mass of the two 

segments of cable which lie on either side of station j.   Also, one-half the 

equivalent transverse mass, e-j, of the entrained fluid associated with each of 

these segments has been included in the inertia tensor.   Furthermore, at 

those stations from which a weight is suspended, the effective horizontal and 

■y- Y 
vertical masses, m-    and m. , of the weight are to be added.   For simplicity 

J J 

in allowing for virtual inertia, we have assumed that any such weights possess 

a certain degree of symmetry and remain upright as the line moves about. 

The force vector,  Fj, on the right side of eq. (2. 1) can be expressed 

as the sum of internal forces (the tensions acting between adjacent mass 

elements) plus whatever external forces are present.   Thus, in expanded 

form the equations of motion can be written 



^j   "   ^yj    =    Tj + l/2  cosöj + l/2   "TJ-l/2  C0SVl/2  +Xi 
(2.2) 

f 
KjX^J^ -    T; j + 1/2  sin 0j + 1/2 "   Tj - 1/2 sin 9j - 1/2  + Yj 

where   T- +1 M  " tension in segment of line between stations j and j + 1 

X^ = horizontal component of resultant external force at station j 

Yj = vertical component of resultant external force at station j 

There are two sources of external force, namely:  1) gravity, which gives 

rise to the weight minus the buoyancy and acts only in the vertical, and 

2) fluid resistance, which gives rise to the damping forces.   Thus, we write 

XJ        2 

]       2 

D.   1' sin 9.   1    +   D.   1   sin 9.   1 
L  J + 2 l+7: ]"■ ] 2J 

% 

D.   1  cos 9.   1    +  D.    1  cos 9.    i 
] + J + ]-• ]-■ 

+  Y.* - Wi - W- J J '] 

(2.3) 

*        ( 

where W^ 
J5     2 lpg (1i4  öi4 +  i. i 

j- 
i) 

Wj   =  m^g  -     pgVj 

and D^ + ^   =  drag on segment of line between stations j and j + 1 
J    2 

Xj*       = horizontal component of damping force on weight at station j 

Yj*       = vertical component of damping force on weight at station j 

Again, in order to get the best approximation to the continuous case, the net 

effect of the drag at station j has been expressed as one-half of each component 

of the drag on the segments which lie on either side of this station.   The 

buoyant force of the displaced fluid has been treated likewise. ( 

19 



We have assumed that the drag, Dj + L on a segment of the line acts in a 

direction at right angles to the line.   This is a good approximation whenever 

the velocity is high enough to produce significant forces, since at all but the 

lowest Reynolds numbers the tangential component of the hydrodynamic force 

is very small compared to the normal component.   Furthermore, we assume 

that the drag is proportional to the square of the component of relative 

velocity normal to the line: 

Dj + l/2    =     -ff+i/2   Vl/2    IV1/21 (2-4) 

where       ff+1/2 = 1   pC^^    lj + 1/2  d. + l/2 

Qj +1/2 = - | [^j + 1 " C) + {ki ' C)] Sin eJ + I/2 +1 [yj + 1 ^j] C0S 9j + 1/2 

The positive normal to the line has been arbitrarily taken to be directed upward 

when 9 equals zero.   The introduction of the minus sign and the use of the 

absolute value of one of the velocity factors ensures that the drag will always 

be opposed to the direction of qj + 2/2 and thus act as a dissipative force to 

remove energy from the system.   Since the velocities of the two endpoints of 

each segment will, in general, differ slightly, their mean value (which for a 

straight line segment is exactly equal to the velocity of the midpoint) is taken 

as a representative value in the definition of qj + 1/2-   In addition, the 

definition allows for the presence of a uniform horizontal current, c, to 

incorporate the ability to treat towing lines as well as mooring lines (or 

mooring lines subjected to ocean currents). 

11 



In addition to the drag on the line itself, there will also be resistance M 

to the motion of any concentrated loads which may be suspended from the line. 

These additional damping forces will vary with the velocity but will not, in 

general, be directed exactly opposite to the motion of each weight.   However, 

on account of the assumed orientation and symmetry of any such weights, the 

resistance force will be parallel to the velocity vector whenever the relative 

motion is either purely horizontal or purely vertical.   Accordingly, the two 

components of resistance may be written 

f -fiYVj 
(2.5) 

where:      f^ = 1   pC^S^ 

fiY = | p CJ
Y
 
siY i 

1/2 

Up to this point an explicit formula has been given for the evaluation 

of every term in the equations of motion (2. 2) with the exception of the 

tensions.   To determine these we must invoke the inextensibility condition 

which was assumed at the outset.   This takes the form of a constraint on the 

motion of the line.   It requires that the separation between adjacent stations 

must not change with time.   Thus, we write 

(xj-x^j)2 +  (yj -yj.i)2 =    ij_1/2       = const. (2.6) 

This holds for each segment of the line, and we require that the corresponding 

set of tensions, T^ _ j M, take on values such that the resulting solution of 

12 
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the equations of motion will be consistent with eq. (2. 6).   Because of the 

implicit nature of this condition, we are led to a system of algebraic 

equations for the determination of the proper tensions.   At the extremities 

of the line (j = 0 and j = s) Xj and y. must be obtained from the boundary 

conditions, namely: 

x0  = x0(t) 

y0 = yo(t) 

xs  = xs(t) 

Ys = ysW 

These are given as functions of time, and permit the introduction of any 

desired types of driving motions. 

Finally, to complete the formulation of the problem a set of initial 

conditions must be given for each station on the line.   Since the equations 

of motion are of the second order, it is necessary to specify both the 

coordinates and the velocities at t = 0.   That is, 

xj(0)=xj0 0<i<s 

yj(0) = yj0 

ij (0) = ijO 

yj (0) - yf 

where the superscript index "0" is used to designate a value at the origin 

in time. 

(2.7) 

(2.8) 

13 



3.   SOLUTION OF EQUATIONS BY FINITE DIFFERENCES * 

A.   General Description of Computational Procedure 

The equations governing the motion of a cable, as derived in the 

last section, are summarized here.   The basic equations of motion, equations 

(2. 2), are repeated for convenience, 

L Jq - & y, = Ti . 1    cos & , 1   - T;    1  cos &   1 + X,      j = 1, 2,... S-l 

(2.2) 
- Kj Xj + Jj y^ = Tj +1  sin 0j + 1  -   Tj_ jl.   sin 9j _ 1 + Yj,        j = 1, 2,... S-l 

where 

a) S is the number of junction points 

b) Ij, Kj, Jj are given in equation (2.1) and are functions of the physical 

properties of the cable and of position only ( 

c) Xj, Yj are given by equations (2. 3),  (2. 4), and (2. 5) and are functions 

of the physical properties of the cable and of position and velocity. 

In addition the motion is governed by the condition of inextensibility of the 

cable, equation (2. 6), 
2 

(xj - Xj . x)2 + (yj - ^ . ! )2 = Ij -i   - const,     j = 1, 2,... S. (2. 6) 

The differentiated (with respect to time) forms of this relation 

(xj -Xj.j) (xj-Xj.1) + (yj -yj.i)(yj-yj_1) = 0,        j = 1, 2... s       (3.1) 

(XJ - XJ _ j) (XJ - xj _ i) + (yj - yj.i) (yj - ^-1) + (XJ -*].i)2 $• *) 

+ (yj-yj_i)2-o  j = 1,2...s 

are also used in the computation, if 

14 ' 



For numerical solution by finite difference methods the following finite 

difference equivalents are used, 

.n+l   .xfi+1-xjn                   1        yin+1 - yj11       ..   9     q - ro ov 
XflJ   --J :   ,        yi    ^ i J—,     j - 1>  2. ..S-l, [6.Ö) 

At At 

xin= J 3 L_,   5^^=   ZJ ^ D , j= 1,2...S-l. (3.4) 
J (At)2 J (At)2 

It is assumed that the boundary and initial conditions are knov/n.   These are 

given in equations (2. 7) and (2,. 8), respectively.   The system of equations 

summarized above, consisting of equations (2. ä), (2,6), (2.7), (2.8), (3.1), 

(3. 2), (3. 3), (3. 4) with the auxiliary equations (2.1), (2. 3), (2. 4), (2. 5) 

completely describe the motion of the cable. 

The computational procedure, as developed in detail in the remainder 

of this section, consists of an algorithm to determine the values Xin+1, 
11 1 

yj11 + 1,, xj11 + 2 , yj11+S (at time t = tn+1 = tn + A t and tn +1 = tn + -|^) 

from known values xj1, yj1, Xj     2 yj     2  (at time t = tn and tn~ 2). 

It is convenient to divide this algorithm in two phases, or steps.   In the first 

.n+-        n+- 
step tentative (or starting) values for Xjn+1,   yi     ,   Xj     2 ,   y■     2   ^e 

obtained.   In the second step improved solutions are obtained. 

■ 

Step 1.   Using equations (2. 2) and (3. 2) (3S-2 equations) we compute 

1 the (3S-2) unknown variables xj11, y^  (j = 1, 2,... S-l) and T"  i (j = 1, 2,... S). 
'       J J"2 

We now use equations (3.3) and (3.4) (4S-4 equations) to compute the (4S-4) 

i - - 
variables at the next time step Xjn+1, yj      , Xjn+ 2 ,   yjn + 2 (j = 1, 2... S-l). 

These are considered only tentative values (denoted in subsequent text by 

use of the tilde). 

15 



Step 2.   To obtain .the improved values of the tensions T*  1  (j = 1, 2,... S)   I 
1 1    J"2 

and the quantities Xjn-,   yjn , Xjn+1,   yjn+1,   Xjn+2,   y^2 (a total of (7S-6) 

quantities) we use the system of equations (2. 2), (2, 6) and (3. 3), (3. 4), 

consisting of (78-6) equations.   However, since equations (2. 6) are not linear 

but quadratic in the unknowns x^ y^ an explicit solution is impractical to obtain. 

For this reason a computation algorithm   based on the Newton-Raphson method 

of successive approximations   is developed.   A detailed discussion of the compu- 

tation   procedure used in this problem is given in the sections which follow. 

B.   Determination of Tentative Values of Tensions 

In summary, the method of solution at each time step involves in the 

first phase,   1) the determination of a tentative (but consistent) set of tensions 

^1-1/2 ^or a^ segments, and 2) numerical integration of the equations of 

motion to predict xj and y.* one step ahead; in the second phase  3) evaluation 

of the discrepancies in the constraint equations from which a set of first 

order corrections to the tensions can be obtained, and 4) integration of the 

equations a second time to obtain corrected values of the coordinates. 

The system of equations (2. 2) may be regarded as a set of (2S-2) 

linear equations in the variables xj, ys (accelerations) and may be solved 

directly for these variables.   If we designate 

LJ= (AtrVdjjj-Kj2) j 

Mj= (M^Jj/dj Jj-Kj2) i 

Nj = (At^Kj/djJj-Kj2); 

thfin the equations of motion (2. 2) can be reduced to: 

16 
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*j   =    [RjTJ + l/2  "   PjTj-1/2 + Uj]   /(At)2 

h  =    [SJTH/2  "  QjTj-l/2 + Vjjm)2 

where:      Pj   = MjCos9j_i/2 + NjSin8j_i/2 

Qj   = NjCOs9j_i/2 +  LjSinej.i/2 

Rj   = Mj cos 9j+i/2 + Nj sin 9j+1/2 

Sj  = NjCos0j+1/2 +  LjSin0j+1/2 

Uj   =  Mj ^  + Nj Yj 

VJ  = NJ XJ  +  Lj YJ 

We observe that equation (3.2)  involves positions, velocities, and 

accelerations.   As is often the case with finite difference procedures, it 

proves to be convenient to compute positions and accelerations at the mesh 

points while velocities are found at the mid-points in time.   For this reason 

we shall use a modified form obtained by evaluating this equation at t = tn 

and t = tn    , and then adding the two results together, namely, 

/   n      n   w-n    -n \     / n      n  w.. n    ..n n-1      n-1     ...n-l   „n-l. 
(xj  -xj.iHxj-xj.!)+(yj -yj-iHyj -yj-i)*^    -XJ.JHXJ   -XJ.J) 

.n-l      n-1    .n-1    ..n-1.    etfA.\-2r,n     n-l\    /n n-ln2 

+ (yj    - yj-i) vyj    - yj-i) + 2(At)   [ (xj - xj1 l) - (XJ.J - XJ.J )J 

+ 2(At) ^ [(yj - yj     ) - (yj.i   -  Vj-i)\ 

in which we have used the approximations, 

(3.6) 

(x n    .n    .2       a?'1    in"1\2 Xj.!)^ +  Hi ii-l )■ 
• n- 

2(xi   2 
.n--i.2 

« 2 [(xj1 - x?"1) /At - (x]1.! - Xj1;/) /At] 
n-1 ..n    .n   ^2    ..n-1     .n-l>2        nt-v    'n~V\ 

(yj -yj_i) +(yj    -yj-i)   *  2(yj ^-yj.f) 

n-l „ n n      n-1. , . n        n-1    y    -, 
*  2[(yj -yj     )/At- (yj-i-yj-i )/At] 
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Note that equations (3. 6) are linear in the accelerations.   Likewise equations 

(3. 5) are linear in the tensions.   Consequently, when these expressions are 

substituted for the acceleration components in the constraint equations (3. 6), 

we obtain a set of conditions which are linear in the tensions, namely. 

E äH/2Ti-3/2 - Fi-1/2 Tj-l/2 + GH/2 Tj+l/2 
+ Ej-l/2 Tj-3/2 

^1/2 ^1/2+ G
H/2 ^l/z* HJ

1
-I/2 + ^ + 4*! - "T'' - (ii - $b] n-lvl2 

^[(yj -yj    )-(yj.i-yj.i)J    = 0 

u r.n /nnn ,nn.n 
where:    Ej.^^ =  (XJ -XJ.^PJ.J    +  {y. -yj.^Qj.j 

(3.7) 

n      n .n    _n n      n ,n      _n 
Fj-i/2 = <xi -"i-iMi') +Ri-i) + (yj -yj-iXQj + Sj-i) 

Gj-1/2   MXJ   -xj.^Rj   +  (yj -yj.^S- 

TTn / n      n   \ /TT
11
    TT

11
   \       / n      n   , /Trn      n   v Hj-i/2   = (xj - xj-i) (Uj - Uj.i) + (yj - yj.j) 0rj - Vj.j) 

Now assume that the solution is correct up to t = tn.   Then all quantities 

in (3. 7) can be evaluated at once except for Tj. 3/2   Ti-i/2  an^ Ti+3/2 • 

The tentative values of the tensions - signified by the tildes - are 

determined by the following system of equations: 

/      n 
-F0.5 Go. 5                                                ] T0.5 -*0.5 

El. 5 -^5^.5 T!.5 -^ n Y 1.5 

45   -F2n5   G2.5 1    < 
^n 
Ts-1.5 

> = < 

T  n 
-^2.5 

:             [ 
"* s-1.5 Es-1.5- ^-1.5  Gs-1.5 

V 
Es-0. 5 " Fs-0. 5,^ 

18 

^Ts-0.5j r* s-0.5/ 

) (3. 8) 



n ji-1        n-1 _n-l      ^n_i ^n-1    ^n-1      .   „n-1 
where •*• where*  j.^ = E^^ Tj.g/g -   F^l/2   T.^ + G.;^ T.;i/2 + H.,^ 

„n .n n      n-1,     .n        n-l-|2 r n     n-1        n        n-li 

In general, we can write:   (for 1  <^ j   <!  s) 

,n ~n jti        ~n „n        -n n 
^-1/2 ^.3/2 " ^-1/2^-1/2 +Gj-l/2Tj+l/2   +  ^   j-l/2    =  0 (3.9) 

n n 
with the conditions:    Eo-5   =   Gs_i/2 = 0 for all n 

nnnn nnnn 
Also  Pg,   Qg,   RQ, SQ  and Ps,   Qs, Rs, Ss  = 0 for all n. 

and    Uo= (At)ÄXQ   and  U^  =  (At)^ xs for all n. 

VQ  =   (At)2yo  and Vg   =   (M)2 y"   for all n. 

™n The matrix of coefficients of the system of equations for T^^  is a triple 

diagonal one, and it can be easily reduced to a single linear equation by 

elimination.   Thus, we solve equation (3. 9) for Tj+j/2 • 

~n *j-l/2     ~n 3-1/2    ~n ^ M/2 ,„ im 
TJ+l/2    "   rn Tj-l/2    "-n Tj-3/2 " ^H  (3-10) 

Gj-l/2 Gj-l/2 G
j-i/2 

Now we express each tension as a linear function of TQ 5  (the tension in the 

first link) äs follows: 

^n n ~n n 
Tj+l/2  =    aj+l/2   T0.5   +ßj+l/2 

~n n ~n n #« ^^ 
Tj-l/2   =    «j-l/2''/T0.5   +  ßj-l/2 f3'11) 

~n n „n n 
Tj-3/2   -    «j-3/2   T0>5   +  ^.3/3 

and we arrive at the following recursion formulas for a!1
+l/2 an<^ ^i+l/2> namely, 
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aj+1/2      V (Fj-1/2   aj-l/2  -   ^-1/2 «1-3/2) % 1/2 ( 
(3.12) 

^1/2   =   (FH/2   ^l/2-E?.l/2^3/2-^.l/2)/G^1/2 

with the conditions:    «Q. 5=1»     «-0. 5 = 0 for all n. 
n n 

% 5 = 0     ß-0. 5 = 0 for all n. 

Starting with j = 1, we evaluate^ aj+i/2 and ßj+1/2 recursively up to j = s - 1. 

~n ,       . 
We then find TQ. 5 from the last equation of the system, (j = s), using the same 

substitutions as before, that is, 

^-3/2 
zfl n ^n „n 
T„ Q/o   -   ^.3/2   T0>5  +ßj-3/2 

n ^n ,n 
T" 1/2   =  «j-1/2   TÖ.5   +ßj-l/2 

The final result is 

~n 
To. 5  = 

,n ^n 
(F^-l/2 ßs-l/2 " Es-l/2 "8-3/2 ß" 

n 
s-i 1/2) 

/ n n m11 n ^ 
(Fs-l/2  «s-1/2 -Es-l/2«s-3/2) 

(3.13) 
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C.   Method of Determining Improved Tensions 

Li order to solve eqs. (3, 5) numerically, we replace X:   and yj   by 

their simplest central difference approximations (equation 3. 4), namely, 

..n n+1       „ n        n-1.   , .   .o 
XJ   =  (xj       -   2xf + XJ    ) / {At)z 

..n       .n+l       on        n-1 2 (3,14) 

yj   = (yj      -  2^   + y.    ) / (At) 

Now we solve for x^     and y^     ,  considering these as tentative values subject 

to a slight modification in order to satisfy a system of constraints.   Thus we 

write 

„n+1 n      n-1 n ~n n ~n n 
Xj      ^Xj-x,      -  Pj Tj.j/2 + Rj Tj+1/2 + Uj (3i5) 

^n+1 n       n-1 n -n n ~n n 
yj       =  2yj - yj       -  Qj Tj.j/2 + Sj Tj+1/2  + Vj 

n     n     n     n     n n 
The quantities Pj, Q*, R.,   S , U.   and V.    are the same as were used to 

J J J J J J 

; up the coefficient matrix for the tensions, and the values for 

~n 

set up the coefficient matrix for the tensions, and the values for  T;_i/2 and 

Ti+l/2    ar8 obtained from eqs. (3.11). 

Next, we determine the set of corrections    öTJJM to be applied to the 

~n n+l n+1 
tensions T-j.^/g in order that the values of xj       and yj    should also satisfy 

the inextensibility condition (2. 6).   For this purpose we define the function 
n+1 j n+1      n+1,2 n+1        n+1 2       2 

flH/25   ii(xi     "^    +<yi      -^-l'   -  lJ-l/2j (3-16) 

which measures the discrepancy in the distance between the extrapolated 

positions of pairs of adjacent stations.   We observe from eqs. (3.15) — 

n+1 n+1 
with the tildes suppressed— that x^       and y;       are functions of the tensions, 

that is. 
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n+1       n+1 f n 

n+1 

n+1 

n+1 ^  n n       1 
- xj      \TH/Z'   Tj+l/2/ 

n n        ] 
Tj-l/2'   Tj+l/2/ 

Consequently,   ■^j-l/2   may ^so ^e expressed as a function of the tensions. 

This enables us to write the system of constraints to which the tensions are 

subject as follows: 
n+1 n+1        /■  n n n       ^ 

fiH/2   =    ^J-l/2    {Tj.3/2.   TH/2.   Tj+l/2l    =0   (1^^S)    (3-17) 

n+1 
since Ü \.\/i   vanishes when the inextensibility condition is obeyed. 

Now let T. '"-3/2  =  ^.3/2   +    a Tf.s/s 

n 
TM/2 

-n 
Tj-l/2   + ÖT 

n 
j-1/2 (3.18) 

n ~n K   Vi 
Tj+l/2  =  Tj+l/2   +     0Tj+l/2 

n+1 ~n -n ^n 
and expand   il ;_i/2 ^ a Taylor series about the point jTj_3/2) Ti-l/2' ^+1/2 

Thus, we obtain ~n+1 ; ' 
n+1 .n+1 8^j-l/2 

9T;_3/2 
^j-l^3   ^j-1/2 4- 

aaj-1/2 
ÖTj-3/2 + 

n 

8T n ÖT. 
j-1/2 

j-1/2 

- n+1 

,. n+1 
3 "J-1/2      .« 

+    aTn    ;       ÖTj+l/2 
aTj+l/2 

+ higher order terms. 

~n 

(3.19) 

where:    ü^^    = ^-1/2 ]Tj-3/2> Tj.^,   Tj+1/21 

1 L-n+l    -n+lv2       rn+l    ~n+1.2 =   2 [(Xj     -x.^)    + (yj     -yH) ^-1/2. 
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.■ 

Provided that the tentative values TP.^ are sufficiently close to the correct 

values Tj_i/2> we may neglect the higher order terms in the expansion (3.19), 

and thereby obtain a system of s linear equations for the differential corrections 

ö Tj_ j/2 •   These equations have the same form as the previous system (3. 8) 

for determining Ti^^, namely, 

■   Jti+1     „n+1 
-F0. 5     G0. 5 

E 
-n+1 
1.5 

.n+1      «n+l 
1.5 

E 
n+1 
2.5 

'1.5 

~n+l 
■F2.5 Gn+1 G2. 5 

pn+1 ^n+l      pn+1 
s-1.5  "Vl.5  Üs-L5 

ÖT0.5 

ÖT 
n 
1.5 

ÖT 
n 
2.5 

,n 
!ÖTs.l.5 

n -n+1        -n+1     j     | 
Es.0.5 -Fs.0.5.i     1  öTs_0i5i 

I    nn+1 

!-%5 

-n+1 
h%5- 

~n+l 
;-n2>5 ;(3.20) 

I 
j 
i    ^n+1 
|-^ö-1.5 

n n+l   j 
s-0. 51 

the general expression being:  (for I < j < s) 

'~n+l n ~n+l n -n+l        n ^n+1 
Ej-l/2   ÖTj-3/2   "   FM/2   ÖTJ.V2+ ^.1/2 0X^/2+%l/2=0       (3. 21) 

where:        n+2 

3Tj-3/2 
=   (x 

-n+l   „n+l 
] ^j-l 

-n+l 
dxj 

8T! n 
j-3/2 

-n+l 
dXj-l 

aT?-3/2 

^n+l   -n+L ay 
n+l 
j 

a?.3/2 

ay 
-n+l    -i 

H 
8T?-3/2 

r 
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^2 

-n+1 

3T 
n 

...n+l    .n+1. 
(xj    -xj-l) 

j-1/2 

dx. n+1 ax ,n+l 

M 
')T 

n 8T n 
j-1/2      oij-l/2. 

.„n+1    .n+1 
+ (yj   - yj-i) 

..n+l 

_^j1.i/2     3Tpl/2 

.n+l 
3yj-i 

aTn 

G 
-n+l 

H/2 

~n+l 
afii-l/2 

äTS1
+l/2 

.-n+l    -n+L ax! n+l 
j 

3x n+l 
M 

dTj+l/2 8T n 
J+1/2J 

„n+l    „n+i 
+ (yj   -yj.i) 

3y 
-n+l 

dT 

.n+l 
ay.i-i 

j+1/2       aij+l/2 
n 

These simplify to: 

-n+l .-n+l    „n+l    n ^n+l    „n+l.    n 
Ej-i/2= ^ "x3-i)pj-i + (yj   -yj-i)Qj-i 

-n+l ..n+l    .n+l   . n      n n+l    „n+l.  . n      n 
Fj_1/2 =   (xj     - xj.i) (Pj + Rj.!) + (yj      - yj.j) (Qj + Sj.i) (3. 22) 

~n+l n+l      n+l    n n+l      n+l    n 

GH/2 = (XJ   -XJ-I)^ + (yj   -yj-i^j 

„n+l       „n+l 
with the conditions:  Eg. 5  =  Gs_i/2 =  0  for all n, and the quantities 

P., Q?, IL   and S-   being the same as before. 

The system (3. 20) can be solved in a manner completely analogous to 

the solution of the system (3.8).   Thus, we write 

5Tn n ÖT" C   + X? j-1/2  =  ^-1/2   Oi0.5   +  Aj-l/2 (3. 23) 

and obtain the following recursion formulas: 

I 
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n .-n+l       n ~n+l        n      w~n+l 
«j+1/2   =    (Fj.l/2 ^-1/2   -   Ej-l/2 ^-3/2)/Gj-i/2 

(3. 24) 

n .-n+l      n ^n+1       n ^n+l        „n+1 
Xj+l/2    =    (FJ-l/2 Vl/^    "   Ej-l/2  xj-3/2  - ^-1/2)/^-1/2 

* 

with the conditions:    KQ^ 5 = 1,   *-Q, 5 = 0 for all n- 

Xo. 5  =0,   X-0.5=0    "    "  " 

Finally, the last equation of the system (when j = s) enables us to solve for ÖTQ. 5. 

I r 

r 

The result is 

i+l      >n ^n+1     .n ^ n+l 
(Fs-l/2    s-1/2 :   Es-l/2 V3/2     ns-l/2} 

,^+1        n Tn+l       h 
(^-1/2 «s-1/2- Es_1/2^s-3/2) 

«TH       -       v   S-1/2     s-1/2       "8-1/2    s-6 2     -s-1/2' «  ^ 5T0.5  " " ^H+l n—'     .n+l h ~      "         (3-25) 

25 



D.   Computation of New Coordinates. 

We can now obtain the corrected values of the tensions in every 

link.   Thus, 

T n = T 
n 

j-1/2 ~ Yl/2 +   ÖT. n 
j-1/2 

ÖTn      +  Xn = Tn + *n 

j-1/2 j-1/2       0.5        j-1/2 

The corrected values of the coordinates are found using eqs.' (3.15) — but 

this time with the tildes suppressed —namely: 

x: 
] 

n+1 =  2^ 
J 

x!1"1-   I^T* + RnTn   ,    +U
n 

J 1    J-1/2 j    j+1/2        J 

yn+l   =2yn-  y""1   -QnTn
i/o    +  SnTn

i/0  + Vn 
yl y]       y] j    j-1/2 j    j+1/2        J 

For solution on an automatic computer it is more convenient to express 

eqs. (3. 27) in terms of corrections to be added to the tentative values of 

the coordinates.   That is, 

ox! 
J 

n+1 pn ÖTn +  Rn   ÖTn 

j       j-1/2 j       j+1/2 

övn+1   =  - Qn öTn 

] 
■       ,     +  S11 öTn    , 

■]        j+1/2 j       j+1/2 

Then the corrected coordinates are given by: 

.n+1 
xn+l   =   x

n+1   +   5 

(3. 26) 

(3. 27) 

C 

(3.28) 

,1 

,n+l 

J 3 (3. 29) 

~n+l        B   n+1 
y.     + öy. 

3 3 

I 
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* 

These values are now accepted as final.   Moreover, as soon as the values 

of -f      ,    (to be used with eqs. (3. 8) for the next time step) have been 
j-1/2 

computed and stored, the cycle of computations is finished and there is 

no further need to retain the values of P?, Q?, R"   S11 and T"    ,„. 
J      J      J     J J-1/2 
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E.   Special Form of Equations for Computing First Time Step. Q 

We assume that the velocity components are zero at each station, 

and obtain the initial coordinates from the equations for static equilibrium 

of the line.   Since x? and yP = 0, eq. (3. 2) reduced to 

(-f - ii) sj - ^ + (yj0 - y°!) (y" - y^) = o p. so) 

and, on substituting the expressions (3. 5), we find that the tensions are 

subject to the constraint 

EH/2 ^3/2 "   1-1/2 *H/2  + GH/2 *H/2 + Hi-l/2  = 0 (3-31) 

Comparing this with eq. (3. 9), we see that 

i0    ,     =   H0    , (3.32)     fl 
j-1/2 j-1/2 ^ 

The system of equations (3. 8) is then solved in the usual way to get the 

proper initial tensions T?-./«- 

To obtain tentative values for the coordinates at t = t , we make use of 

their Taylor series expansions about the point t = t0, namely: 

x.1 = x° +  (At)x0 + ^(At)2x0 + 
(3.3^) 

y1^  y0
+   (At)^-. l(At)2y0

+... 

Taking x?and y0 = 0,   and substituting eqs. (3. 5) for x0 and y?, we find 
J ] J J 
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-      ■    ■'■■■■. ■:■■>■-,,■-:,■■,..;!,   ..,,p',:;,.,:.i,,;,,,.,,,,,,.,,;,,,„   ,;.. .■r..,.^. ,.,...„..„ ...„.^ . .,    ,,,,,,,,, „..„ 

j 
x0 + i 

J       2 

^ ^H 
pO-0 ,    R0T0 +   TT0 

PJTM/2 + RjTj+l/2 +  Uj, 

^H/2^/2^ 
(3.3^ 

The corrections to the tensions are then determined by the system of 

equations (3. 20) in the usual manner.   Finally, the corrections to the 

coordinates are computed as follows: 

1 ox1 

J 

öy1 = 1 
J       2 

^•-1/2 
+ R0 ÖT0 , /9 ]      1+1/2 

S0 5T?-1/2  +  S° 6t./2 
(3.35) 

and the corrected coordinates are given by: 

.1 - x1 + öx1 

J 1 

y? +5y1 

i       j 

29 
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4.   ANALYSIS OF NUMERICAL STABILITY 

In order to obtain a valid solution of the system of partial differential 

equations (2. 2), (2. 6), governing the generalized motion of a cable it is 

necessary to insure the staoility (in the sense discussed in References 1, 2, 3)* 

of the equivalent finite difference system (2. 2), (2. 6), (3. 3), (3. 4).    In this 

section we will derive the criteria for stability of this system of equations. 

We will also show that whereas the system of finite difference equations 

(2. 2), (2. 6), (3.3), (3.4) is stable for sufficiently small time intervals At, 

the system (2. 2), (3. 2), (3. 3), (3. 4) is always unstable.   This characteristic 

of the latter system has led to the abandonment of this simpler set of equations 

in favor of the more difficult nonlinear system (2. 2), (2. 6), (3. 3), (3. 4). 

In order to determine the stability of a system of finite difference 

equations we study the growth of a small disturbance or perturbation.   The 

conditions for stability are said to be satisfied if the amplitude of a small 

disturbance, introduced at any time, t, in any of the dependent variables, 

does not increase exponentially with successive time steps.   This condition 

may be stated as follows: 

If 5F(s, t) and öF(s, t + At) are values of a variation (or perturbation) 

in any of the dependent variables x, y, T in the system, then it is said 

to be stable provided |ö F(s, t + At)/öF(s, t)  < 1.   We introduce 

perturbations öx, öy, ÖT in the independent variables x, y, T, respectively. 

For the sake of the stability investigation we further assume that ej is 

negligible compared to mj.   Substituting in equations (2. 2), (2. 6)^ (3.3), .and (3.4) 

we obtain the variational system of equations 

* References are listed on page 41. 
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. 

I      mJö5j = Tj+]/2 öcos Vl/2 " Tj-l/2 ÖC0S Vl/2 + C0S Vl/2 öTj+l/2 

-cos9j-l/2 öTj-l/2 -   2[Dj+l/2Ösin9j+1/2 + Dj_1/2ösin9j_1/2 

+ sin ej+1/2 öDj+l/2 + sin 9j.1/25Dj_l/2_ 

;- 

■ 

f 

aJöyj = Tj+l/25sin öj+l/2 - Tj.i/gösin 0j_1/2 + sin 9j+1/25Tj+1/2 

- sin 9j_.1/2 ÖTj.1/2 + 2 [DJ+1/2öCOS 9J+1/2 + Dj.^öcos Q^1/2 

+ cos 9j+1/2öDj+l/2 + cos 9]..1/2ÖDj_l/2] 

cos9j+l/2öcos9j+l/2 + sin0j+l/2Ssin9j+l/2  = 0 

where. 

.D 
ÖDj+l/2 = - 2fj+l/2 ^+1/2   öc3j+l/2 

mrm]+ mj 

(4.1) 

öq +1/2 = " 4^+1 - c) + ^ ~ c)] ösin 9j+l/2 +1 (yj+1 + y^öcos 9j+1/2 

" |sin 9j+l/2 föXj+i + ö xj) +1 cos 9j+1/2 (öyj+1 + öyj); 

and where, 

öcos 9j+1/2 = (öxj+1 - öxj)/ij+i/2J 
ö sin 9j+1/2 = (öyj+1 - öy^/^j^; 

öin-l/2 = (5xn_ Öxn-1)/At)   öy!1"1/2 = (öy!1- öy!1"1^; 
] J J       "J 

5x?= (ö^1- 25xn+öxn"1)/(At)2, öyn=(öyn+1- 2öyn + öy^VfAt)2. 
J J JJ JJ JJ 
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We will assume in this analysis that within a small region in the (s, t) 

plane the coefficients (T?, cos 9?, D?, etc.) of the variational functions vary 
J J      J 

only slightly and hence may be treated as constants.   We will denote these 

simply by T, cos 0, D, etc., omitting the subscripts.   A solution of the 

system of equations (4,1) can then be obtained in the form, 

5xn = aeißJ+cmAt 

j 
5yn = beißJ+«nAt 

j 
5T?= ceiß3+(mAt 

J 

where, a, b, c are real constants and ot complex.   Substituting in equation (4.1) 

we obtain a system of linear homogeneous equations for the quantities a, b and c 

which has a non-trival solution provided the determinant of the coefficients is 

identically zero.   After some algebraic simplifications the determinant of the 

coefficients may be written in the form 

i 

f 

F - A sin 9 

• D' + A cos 9 

cos 9 

D' + B sin 9 

F - B cos 9 

sin 9 

cos 9 

sin 9 =  9 (4.2) 

where 

A = flql^iy sin ß - (1 sin 9/At)(l + cos ß)(l - X"1) 

B = f|q||2i(x - c) sin ß - (i cos Ö/At)(l + cos ß)(l - X"1) 

D' = iD sin ß 

F = ml£/(At)2 + 4T sin2ß 

C 
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, 

I 

(4.4) 

and where 

X=eaAt,     ^(A.-2 + X-1). 

Multiplying the elements of the determinant and simplifying we obtain 

A sin 0 + B cos 9 - F = 0 (4.3) 

But, A sin 0 + B cos 0 = 

f Iq, (2i sin ß)p - (t/At)(l + cos ß)(l - X"1) 

where p = (x - c) cos 0 + y sin 9 

i. e., the tangential component of the velocity of the cable (relative to the 

medium). 

Substituting in equation (4. 3) we finally obtain 

miA2+|f |q  At [1(1 + cos ß) - pAt (2i sin ß) 

+ 4T(At)2 sin2 ^ - 2mi}x + [mi- f |q| lAt (1 + cos ß)]  =0. 

Now, comparing the first and second terms of the coefficient of X we find 

that the second term is negligibly small provided 2p At « i, i. e., the 

tangential distance traversed by the cable in one time step is very small 

compared with the length of the cable segment.   Since this is usually the 

case and, at any rate, can always be satisfied by taking the time step 

sufficiently small.we will omit this term from our suosequent analysis. 

For the case of negligible drag, i. e., f = 0, approximately, we obtain 

from equation (4. 4) 

X2 + 14 T (sin2 |)(At)2/ml- 2l X + 1 = 0. (4.5) 

In order for the solution to be stable, the conditions  jx^l   < 1,   |X2l  < 1 

must both be satisfied.   But if Xj is a solution of (4. 5) then X2 = -*   is also 
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i 
a solution.   It follows that the conditions for stability can only be satisfied if 

^2 

i.e., 

1 

M + *2 

1 
= 1.   Now, let Xj = cos y + i sin y, A2 = cos y - i sin y = -j^-; 

2 cos y    < 2.   Again from equation (4. 5) 

in2ß' 
Xj + X2 =   2 

4T (sin^)(At) 

mi 

We thus obtain the inequality 

<   2 

or 

2~ 4T (sin2|)(At)2/ml: 

T(sin^)(At)2/mi <  1. 

This requirement is tantamount to the condition, 

(4.6) 

At  < mi 
velocity of transverse wave * 

Li the more general case, allowing for finite drag, equation (4. 4) may 

be reduced to (after neglecting the second term of the coefficient of X), 

rälX2 + rf|q|lAt(l + cos ß) + 4T(At)2 sin2 ß - 2mil X 
L ^ J (4.7) 

+ [ml- f|q|iAt(l + cos ß)]   =0 

This equation is more difficult to analyze.   However, it is possible to show 

that both 

conditions 

<  1  and X2   <   J.  provided the slightly more stringent 

At < 

At    < 

/mi 
/ 2T 

m 

and 

(4.8) 

are satisfied. 

2f|q| 
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We will now show that the replacement of equation (2. 6) by its 

differentiated form (3. 2) results in an unstable system; and that furthermore, 

the use of any time interval At no matter how small does not change the 

unstable character of the equations.   It will suffice to show that this condition 

exists in the case when the drag is negligible, i. e., f = 0.   The variational 

equation corresponding to equation (3. 2) is, 

(Xj - X^jKöXj -  ÖXJ.J) + (Xj - Xj.lKÖXj -  ÖXj.j) + 2(X. - Xj-l)(ÖXj -  ÖXj.j) 

+ (yj - yj-iKöyj - öyj-i) + (yj - yj-iKöyj - öyj-i)+ 2(yj - yj-iHöyj - öyj-i)= 0- 

Substituting appropriate values for öx, 5y and neglecting terms containing f 

the determinant equation (4. 2) is replaced by 

0 

0 

cos 9 

sin 9 

(xj - Xj..!)! + (icj - xj.jKAt)' 

+ 2(xi j " ^-l^1 
\fi     »-1 }At 

(yj-yj.i^ + Cyj-yj-iKAtr 

+ 2^ -yj-^d- x-^At 

= o 
(4.2-) 

Multiplying the elements of the determinant we obtain 

F cos 9  [(xj - Xy^ + (Xj - Xj.^CAt)2 + 2^ - Xj.^d - JT^Atj 

+ F sin 9 [(yj - y^%   + (yj - yj.^fAt)2 + 2^ - yj.^d - X'^AtJ = 9 

X; -  X, 
Equating 

y^ - y. 
cos 9=   J     J"1   ,    Sm9=IL-±l; 

V ^-1/2 h-l/2 

and using the relation (first time derivative of equation (2. 6)), 

(xj - xj.j)^ - Xj.i) + (yj - yj.j)^ - yj.i) = 9 

(4.9) 
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as well as equation (3. 2) we obtain in place of equation (4.9) 

F (l2|   - [(xj - xj.j)2 + fy - yj.!)2] (At)2 } = 0. 

Thus, in order to satisfy the stability conditions the following two equations 

must be satisfied 

F = 0 (4. 

and 

t 

10) 

iH (v *H>2 + ftr W2 (At)   =0. (4.11) 

It can be shown that equation (4.10) is equivalent to the criterion (4. 6) and is 

satisfied provided 

However, equation (4.11) can never be satisfied for any finite At, since it 

requires that 

I = [(XJ - ij-i,)2 + (^ - yj-i)2](At)2/i2, 

a positive quantity.   This conclusion follows as a result of the definition 

| = X - 2 + A.   .   If Xj is a root of equation (4.11), then X2 = -r— is also a 

root of this equation.   As before, it follows that for stability   Xj j < 1 and 

1 
A2 <  1.   Hence  Xj  =  X2 =1.   Let Xj = cos y + i sin y, 

1 72 - cos y - sin y = i-; then % = 2 (cos y - 1), or - 4 <   ^  < 0.   Thus, 

to satisfy the stability requirement % must lie between 0 and - 4, and 

consequently is always negative or zero. 

In Figure 3 the vertical velocity of the midpoint of a mooring line is 

plotted as a function of time, both as obtained by the use of the stable (valid) 

i 
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system of equations (2. 2), (2. 6), (3.3), (3.4) and as obtained on the basis 

of the unstable (invalid) system (2. 2), (3. 2), (3.3), (3.4).   It will be 

noticed that at approximately 18 seconds the unstable solution rapidly 

increases beyond any reasonable limit. 

( 
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5.   RESULTS AND CONCLUSIONS 

A number of solutions vvere carried out for varying ./ave heights and 

periods.   Several typical solutions are reproduced here for the information 

of the reader.   In Figures 4, 5, and 6, plots are given of the maximum 

tension attained along the cable as a function of time for  /ave heights of 

6 feet and periods of 12. 5 seconds, 7. 5 seconds, and 5 seconds, respectively. 

The periods of the variation in maximum tension correspond to the periods 

of the forced vibration, as expected.   The maximum tension, however, 

increases in amplitude from 32, 250 lb in the case of the 12. 5 sec period 

waves to 38, 500 lb for 7. 5 sec period waves to 49, 500 lb 77hen the period 

is 5 seconds.   In Figure 7 the maximum tension attained for  /ave heights 

of 9 ft and a period of 7. 5 seconds is plotted.   The maximum tension is 

approximately 60, 000 lb as compared with 38, 500 lb for the case of 6-ft 

waves with the same period. 

As an experiment to aid in understanding the effect of the drag caused 

by the presence of the fluid on the motion of the cable, one case was carried 

out with zero drag (i. e., motion in vacuum).   A very interesting motion 

pattern was obtained which appears not to possess a periodic character. 

This solution is reproduced in Figure 8. 

The successful solution of this problem, as well as a number of others, 

involving complex nonlinear systems of partial differential equations by the 

use of high-speed calculators and finite difference methods constitutes, in 

the opinion of the authors, a major advance in applied mathematics. 
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Until recently it has oeen considered unfeasible to obtain numerical 

solutions for general systems of partial differential equations with the 

exception of a few isolated simple types of equations whose solutions are 

known in analytic form.   However, the solution of engineering problems^ 

in almost every major field of science, is expressible in terms of systems 

of partial differential equations.   Supersonic and subsonic aerodynamics, 

nuclear reactor design theory, heat flow, propagation of electromagnetic 

and acoustic waves are but a few areas which fall in this category.   In the 

past engineers have largely depended on experience and on simplified 

linearized models of the phenomena under study.   In the future, such 

simplified theoretical models will become less valid - as speeds under 

consideration increase, stresses become larger, temperatures higher. 

It may also be expected that experimentation will become more costly, 

more time consuming, and, at times, unfeasible.   It is fortuitous that, at 

the same time, a new approach appears to be unfolding for the solution of 

many difficult engineering problems - based on the mathematical represen- 

tation of the phenomenon and the numerical solution of the resulting 

unabridged system of equations by the use of high-speed calculators and 

finite difference methods. 

The programming of the various phases of this problem was carried 

out by Mr. Thomas McFee, of the Applied Mathematics Laboratory, in a 

most effective manner.   The speed and accuracy with which he accomplished 

this phase of the solution were largely responsiole for the success in meeting 
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the required time schedules.   The authors would also like to express their 

gratitude to Mr. R. T. McGoldrick, of the Structural Mechanics Laboratory, 

for proposing this problem and for a number of helpful discussions; to 

Dr. R. Bart, Structural Mechanics Laboratory, for a numoer of ideas 

used in setting up the numerical procedure; to Dr. E. H. Kennard, David 

Taylor Model Basin, and Dr. R. M. Langer, Bureau of Ships, for helpful 

discussions in connection with the definition of the problem; to Dr. Daniel Shanks, 

Appliea Mathematics Laooratory, for valuable suggestions; and to 

Miss Corinne Lundgren^, Applied Mathematics Laboratory, for assistance 
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